If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+50n=0
a = 5; b = 50; c = 0;
Δ = b2-4ac
Δ = 502-4·5·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-50}{2*5}=\frac{-100}{10} =-10 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+50}{2*5}=\frac{0}{10} =0 $
| 5+6m=95 | | 6n14=16 | | 3.5x3.1=2 | | 8(3x+6)=9(2x-4)= | | 175m-100m+43,200=45,675-150m | | 1.8x+(1-x)=1 | | -9(6=x)-2x=-10 | | 4x+7x-3x=40 | | x−18=−36.6 | | -8a+10=(2(5-4a) | | 5/6=x/40 | | 3x-12=6x-8 | | 2(4-3x)=-40 | | 16-2q=q-7 | | 13x+7(-3-1)=-83 | | 6n-10=14 | | 5^2x=4^-x+2 | | 4x+9=×14 | | −6(9k−3)=3(6−18k) | | 3x^2-12x+36=-1 | | 8.9=x+13(7) | | 3k+18=81 | | 8.9=x+13(70 | | 25=5/2w | | 12n+10=310 | | b+4=9b= | | 1/2x-4(2/3x-3)=2/3x-6 | | 4/7x+7=495 | | 8/9=x+13(7 | | -64/z=8 | | 189+4√3=(1/2)(12+√3)h | | 2h=h+6 |